Mechanism of Multi-Objective Genetic Algorithm for Maintaining the Solution Diversity Using Neural Network
نویسندگان
چکیده
When multi-objective genetic algorithm is applied to real world problems for deriving Pareto optimum solutions, high calculation cost becomes a problem. One of solutions of this problem is using small number of population size. With this solution, however, it often happens that the diversity of the solutions is lost. Then the solutions which have the sufficient precisions cannot be derived. For overcoming this difficulty, the solutions should be re-placed when the solutions are converged on a certain point. To perform this re-placement, inverse analyze to derive the design variables from objects since the solutions are located in the objective space. For this purpose, in this paper, the Artificial Neural Network (ANN) is applied. Using ANN, the solutions which are concentrated on certain points are re-placed and the diversity of the solutions is maintained. In this paper, the new mechanism using ANN to keep the diversity of the solutions is proposed. The proposed mechanism is introduced into NSGA-II and applied for the test functions. It is discussed that in some functions the proposed mechanism is useful compared to the conventional method. In other numerical experiments, the results of the proposed algorithm with plentifully population are discussed and the affection of the proposed mechanism is also described.
منابع مشابه
Modeling and Multi-Objective Optimization of Stall Control on NACA0015 Airfoil with a Synthetic Jet using GMDH Type Neural Networks and Genetic Algorithms
This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...
متن کاملPrediction of mechanical and fresh properties of self-consolidating concrete (SCC) using multi-objective genetic algorithm (MOGA)
Compressive strength and concrete slump are the most important required parameters for design, depending on many factors such as concrete mix design, concrete material, experimental cases, tester skills, experimental errors etc. Since many of these factors are unknown, and no specific and relatively accurate formulation can be found for strength and slump, therefore, the concrete properties ca...
متن کاملMulti-objective optimization of geometrical parameters for constrained groove pressing of aluminium sheet using a neural network and the genetic algorithm
One of sheet severe plastic deformation (SPD) operation, namely constrained groove pressing (CGP), is investigated here in order to specify the optimum values for geometrical variables of this process on pure aluminium sheets. With this regard, two different objective functions, i.e. the uniformity in the effective strain distribution and the necessary force per unit weight of the specimen, are...
متن کاملA Method for Pre-Calibration of DI Diesel Engine Emissions and Performance Using Neural Network and Multi-Objective Genetic Algorithm
Diesel engine emission standards are being more stringent as it gains more publicity in industry and transportation. Hence, designers have to suggest new controlling strategies which result in small amounts of emissions and a reasonable fuel economy. To achieve such a target, multi-objective optimization methodology is a good approach inasmuch as several types of ...
متن کاملModeling and Optimization of Energy Inputs and Greenhouse Gas Emissions for Eggplant Production Using Artificial Neural Network and Multi-Objective Genetic Algorithm
This paper studies the modeling and optimization of energy use and greenhouse gas emissions of eggplant production using artificial neural network and multi-objective genetic algorithm in Guilan province of Iran. Results showed that the highest share of energy consumption belongs to diesel fuel (49.24%); followed by nitrogen (33.30%). The results indicated that a total energy input of 13910.67 ...
متن کاملAERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS
In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...
متن کامل